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Separation and magnetohydrodynamics 

By JOHN BUCKMASTER 
University College London 

(Received 9 September 1968 and in revised form 29 January 1969) 

This paper is an investigation of MHD boundary layers in a transverse magnetic 
field when the magnetic Reynolds number (Rm) is small. The main purpose is 
to understand something about the suppression of separation by a strong 
magnetic field, with particular emphasis on the behaviour near a rear stagnation 
point. Given an O( 1)  inviscid flow it is shown that there is a critical value of N,  
the interaction parameter, to completely suppress separation. This value is one 
half that proposed by Leibovich (1967), a discrepancy that is due to the non- 
regularity of the boundary-layer equations at  a rear stagnation point, a possi- 
bility that Leibovich did not consider in his solution. Model linear equations 
suggest the true role of Leibovich’s solution. The possibility of a viscous wake 
leaving the rear stagnation point is considered and it is suggested that one does 
not arise from vorticity generated in the boundary layer. 

Introduction 
This work aims to throw additional light on the question of the suppression of 

separation by a magnetic field. There seems to be no doubt that, granted the 
exterior inviscid flow, the suppression of vorticity by the non-conservative 
Lorentz force can delay the onset of separation. Interest then shifts to the neigh- 
bourhood of the rear stagnation point in an effort to discover whether the 
suppression can be complete. This important step was first taken by Leibovich 
(1967). However, his main conclusion that a sufficiently strong magnetic field 
does suppress completely is only a part of the rear-stagnation-point problem. 
Unlike flow at the front stagnation point, the boundary-layer equations at  the 
rear are not regular and attempts to find a Blasius-like expansion as a power series 
in distance along the wall must fail. Once this is realized the failure of Leibovich’s 
equations for a weak field cannot be interpreted as necessarily implying separa- 
tion. More probably the regularity assumption fails to all orders in distance and 
a more complex (non-similar) solution must be sought. The critical value of the 
interaction parameter to prevent separation is one half of the value proposed by 
Leibovich. For large values of N we suggest that Leibovich’s solution is correct 
if interpreted as the leading term in an asymptotic expansion about the rear 
stagnation point. 

Much of our discussion is based on linear model equations, but first of all we 
examine the proper boundary-layer equations and present evidence that separa- 
tion can be suppressed. This includes a review of previous work with special 
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attention to that of Leibovich. Model equations and other evidence reveal the 
non-regularity of the boundary-layer equations at the rear stagnation point, a t  
the same time suggesting the true role of Leibovich's solution. A model for the 
Navier-Stokes equation throws light onto the nature of the breakdown of the 
boundary-layer equations implied by the non-regularity. This manifests itself 
not as a boundary-layer-like wake leaving the rear stagnation point but simply 
as a neighbourhood of the point of radius O(R-4) in which derivatives parallel 
to the wall are as important as those normal to the wall. If the interaction 
parameter based on the minimum velocity gradient is larger than 1 there 
should be no observable vorticity shed by the body. 

I n  spite of the positive nature of the above it should be emphasized at an early 
stage that very little is actually proved. The picture presented is plausible in 
the light of the few facts that are proved, intuition, and model equations. In  
addition, the argument is buttressed with a numerical integration of the exact 
boundary-layer equations. 

Flow model 
Consider a cylinder with generators perpendicular to the plane of flow, im- 

mersed in a conducting fluid and carrying a magnetic field perpendicular to the 
surface. The strength of the magnetic field is supposed to remain constant 
around the perimeter. Then assuming that the magnetic field induced by the 
motion can be neglected, the equations governing the boundary layer are 

au au au 
ax ay ax 
u-+v- = U-+N(U-u)+N-  

au av 
ax ay 
- + - - 0 .  

Here U is the outer inviscid flow speed and N is the interaction parameter 

~TB; L N = - .  
P "0 

All quantities are non-dimensional and both y and v have been scaled to eliminate 
R from the equations. At all times it is assumed that U is an O(1) function of 
x independent of N .  In  any application where the outer inviscid flow is known 
the required modifications should be trivial. 

An alternative form of the equations is 

which show quite clearly that at  a point where U vanishes the equations are 
singular. Only a subset of all possible solutions will be regular at such a point 
and there is no apriori guarantee that our boundary conditions will be consistent 
with solutions from that subset. 
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Solution for large N 
When the interaction parameter is very large we seek a solution to (1) in the 

form? u = u o + ( l / N ) u l +  ..., w = u o + ( l / N ) v l +  ..., 

whence I 
I a%, d u  au, auo 

__- u~=-u-+uo-+w -, dx ax ,ay 
a%, au, au, au au, j 

ug = u,-+u -+w --l+wl--. aY ax l a x  O ay ay 
__- 

Equations (2) determine the ui and then the wi are found from the continuity 
equation. The leading approximation has the well-known Hartmann-layer 

structure uo = U(l-e-U), wo = U’(l-e-U-y), 

with a first correction 

u1 = UU‘e-g(gy+ay2), u1 = (UU’)’($y2e-U+& 4Y e - ~ + ~ e - ~ - ~  4 ) *  

Higher terms can be calculated with rapidly increasing effort. We will be content 
to write down the skin friction at  the wall up to terms of order N-2: 

au 1 1 
‘UU’ - - (&U( U’)’ - &U( U U‘)’) + O(N-3). (3) N2 

-(x,O) = u+,, 
ay 

Provided the prescribed outer flow U is analytic we could, in principle, compute 
an arbitrary number of terms, implying that separation is completely suppressed 
at least in the limit N + 00. The only difficulty that our solution exhibits is at  
the leading edge of sharp-edged bodies where the initial conditions are not 
satisfied and the displacement thickness does not vanish (figure 1). In an O(N-1) 
neighbourhood of the nose the inertia terms must be reinstated. This is also 
necessary at  the back in order to continue the boundary-layer development off 
the body. On the other hand, if the body is blunt, it can be sheathed with our 
solution everywhere without contradiction (figure 2). The remarkable flow de- 
picted by figure 2 in which no vorticity generated at  the body surface ever leaves 
the thin layer sheathing the body is believed possible not just in the limit N -+ 00, 
but for sufficiently large finite N .  Equation (3) can be used to crudely estimate 
what is meant by ‘sufficiently large’. Suppose the exterior velocity is 

U = 2sinx, 

so that [ L ” ( . , O ) ]  = 2-----+ 3 25 1 
N 24N2 * * “  X = H  sin x a y 

If the series was convergent it would vanish for N just equal to the value necessary 
to suppress separation. The first two terms vanish when N = 8; all three vanish 
when N 2: 2-02. The suggestions that interaction parameters of unit order of 
magnitude are sufficient to suppress Separation will subsequently be confirmed. 

t Hunt & Leibovich (1967) have described a development of this kind in their work 
on two-dimensional ducts. 
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Unsteady analysis 
If the exterior velocity is established impulsively, the initial motion is described 

by a balance between the viscous term and the time derivative. Such an analysis 
was first done for OHD by B1asius.t Define 

FIGURE 1 

FIGURE 2 

A solutioii to equation (4) is sought in the form 
m 

f = C Cn(1/, X) tn. 
n = O  

The cn satisfy 

Q,,, + 21/50,?) = 0,  

C1,?), + 21/L,, - 4C1, = 4Q, QgX - 4GX Q,, + 4NCO;,, - 4( UU' + N U ) ,  

C2,9,+2rC2,1-~C2,  = ~ ~ 0 , ~ 1 , x + 4 ~ ~ , , ~ 0 , x - ~ ~ 0 ~ ~ 1 9 , , - 4 ~ ~ x ~ 0 , , + ~ ~ C 1 , ~  

Now write Co = UF0(r),  ll = UU'Flo(l/) + UPll(y), so that 

(6) 1 
F'+2@; = 0,  

Ffo+ 21/9;,-4P;, = 4[(F;)2-F0F;I- I], 

Fj;; + 21/F;, - 4P;, = 4N(F; - 1). 

t Note added in proof. It has been pointed out to the author that Tsinober et al. 
(1963) fist' did an analysis along these lines. 
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The solution for Fo is FA = erfy. 

Schlichting (1968) gives the solution of Flo as derived by Blasius, and the solution 
for Fll is 

Fil = N erfc 7 - 4Ni2erfc y. 

This is the contribution made by the magnetic field. 
The skin friction is given by 

On the back portion of the body where U‘ is negative it is clear that the magnetic 
field delays the appearance of the rear vortex. Indeed, if U = 2 sin x then for 

N = 2(1+$n) 

the square bracket in (7) vanishes and to that approximation this is what is 
required to completely suppress separation. 

Review of previous work 
In  1964 two papers were published that investigated equations (1) with a view 

to determining the effect on separation of a magnetic field. Pucks, Fischer & 
Uhlenbusch took U to be proportional to sinx with a proportionality constant 
that vanished in the limit N -+ co. They made a Blasius-type expansion about 
the front stagnation point, numerically integrating the set of similarity equations. 
Separation was only prevented in the limit N + CQ but the authors did not claim 
any accuracy for large N. 

Moreau (1964) used Meksyn’s method and found the following criterion for 
separation : 

(8) < = S x ~ c i x ,  -<-(1nU2)-- d 2NE = 0.2. 
0 dg U2 

If U = 2 sin x this gives for the location of the separation point 

- (N + 0.2) 
2.2 ’ cos 2, = 

showing that the critical value of N is 2. 
Leibovich (1967) made an important contribution to the problem by concen- 

trating on the rear stagnation point. He showed that the boundary-layer equa- 
tions derived by assuming a velocity of the form u = xj”(y) only have a solution 
if NL > 2, where N 

NL = Ta’ a = UIIRSP, 

where subscript RSP indicates values at  the rear stagnation point. Thus for 
U = 2 sinx he was unable to get a solution for N < 4. Leibovich interpreted this 
result as indicating that separation and/or unsteady flow occur if N < 4 despite 
the fact that the skin friction does not vanish when N = 4. This curious result 
contradicts that of Moreau. The value N = 2 was only special in Leibovich’s 
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unsteady analysis where it marked the dividing line between unsteady flow with 
and without eddies. 

Another curious feature of the rear stagnation point similarity solution is the 
algebraic decay for large y. The arguments against aIgebraic decay break down 
a t  isolated points and also if the exterior flow can be algebraically infinite at  the 
body surface at the second approximation in an expansion for large Reynolds 
number (Brown & Stewartson 1965). I n  general we do not know the first inviscid 
approximation to the outer flow so that the second possibility cannot be evalu- 
ated, but algebraic decay would be less of a problem if the rear stagnation point 
was an isolated point in this respect. There is nothing isolated about a point 
about which there is a uniformly convergent Taylor series in x. Put  another way, 
we would hope that the algebraic decay is a manifestation of the non-commut- 
ability of the limits 

If these two limits do not commute there is no uniformly convergent expansion 
about xRSp. 

Exact separation criterion 
Moreau’s (1964) result that N = 2 is the critical value when U = 2 sin x can be 

confirmed without solving the equations. It is only necessary to make the same 
argument that is used to show, in OHD, that separskion occurs when the pressure 
gradient is adverse. 

At the separation point the skin friction vanishes but u is strictly positive in 
some neighbourhood of the wall whence 

Equations ( 1 )  and (9) then imply that, at separation, 

It follows that if N is larger than the maximum value of ( - U ’ )  on the body (e.g. 
2 if U = 2 sin x) then the skin friction is positive everywhere on the body and 
separation does not occur or, more precisely, reversed flow does not occur. The 
criterion (10) is not altered if the flow is unsteady in agreement with Leibovich’s 
unsteady analysis where for N > 2 eddies did not form. When 2 < N < 4 
Leibovich suggested that separation without reversed flow occurred: recall that 
N = 4 was the smallest value for which a rear-stagnation-point similarity solution 
could be found. Now certainly we do not reject completely the possibility of 
separation without reversed flow. On the other hand, it will be shown that the 
failure of a similarity solution does not necessarily imply separation. In  addi- 
tion, numerical solutions of (1) for U = 1 - x  do not exhibit separation when 
1 < N < 2, although there is only a similarity solution for such a U when N > 2. 
Thus Leibovich’s unusual hypothesis, whose physical picture is unclear, is not 
needed. 
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Asymptotic solution for large y 
It is relevant to our brief discussion of Leibovich's result to consider the general 

solution of the boundary-layer equations as y + 00. Following Brown & Stewart- 
son (1965) we suppose 

u N U(x) +A@, y)exp 

2) N -YU'(x)+h'(x), J 
where the y dependence of A is algebraic and exponentially smaller terms have 
been omitted. Substituting (1 1) into the momentum equation and equating 
powers of y yield 

gUF' + U'F = N , )  

( 1 2 )  
Uk' + U'k = h', 

The magnetic field makes two contributions: it introduces an additional term 
into the equations, namely the last term in the third of (12), and it makes an 
examination of the solution in the neighbourhood of the rear stagnation point 
meaningful. 

Integrating equations (12), 

where k, and x1 are constants. Also we write 

A = B(x)yn; 

x1 and n are determined from the solution of the front stagnation point (the 
limits x + 0, y + co commute) whence 

x, = 0,  n = - ( N + 3 ) .  

Integrating the equation for A yields 
BU4+N = const. exp[dx { 2 N + 5  ~~ -:I, 

2 Udx 

Integrating the equation for A yields 
BU4+N = const. exp[dx { 2 N + 5  ~~ -:I, 

2 Udx 

so that if U = sinx 

B(sinx)4+N = const. (tan ix)-Nexp(- &(ZN+ 5) cot &], 

B N (n - x)-~. which behaves as x + n like 

Clearly the two limits x + n, y + 00 do not commute. 
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Attempted regular expansion 
The failure of the above limits to commute implies that a regular expansion 

will not work. It is of interest to see how the failure arises. A solution is sought 

in the form co 

v = -  5 (2i + 1) A,i+l f 2 i + l ( Y )  x2i,  
i = O  

which, when substituted into the boundary-layer equations, yield 

I N N -fT - - ( f ;  - 1 )  + 1 + f J ;  - f ; 2  = 0, 
A1 A1 

-ft - - (j; - 1 )  + 4 + 3f& +f& - 4ff;fA = 0, 
A1 A1 

N N 

.... I ... ... 
When y is large f i  - y+C,+F, 

and 

For the rear stagnation point it is appropriate to write N / A ,  = - NL. Then with 

y = YJNL, 

T” - (4 Y 2  + (N  - 3)) T = 0. 

F i  = T e f y a  

T satisfies the equation 

Solutions are the parabolic cylinder functions, whence 

Fi YZ-NL, 

which is only acceptable if NL > 2 .  This was first discovered by Leibovich. 
It is immediately clear that a decaying complementary function for ( 1 6 b )  

only exists if NL > 4 so that any solution for NL < 4 cannot contain an arbitrary 
constant. But there are two boundary conditions at  the wall, only one of which 
has been taken care of (by C3). It follows that a solution forf3 can, in general, 
only exist if NL. > 4 .  

This escalation continues to higher terms. At each stage a solution is only 
possible if 

and therefore for all finite N a regular expansion must eventually fail. NL = 2 is 
no more a special value than NL = 4 or NL = 6. They all represent stages at which 
an additional regular term can be found, the only distinction of 2 being that it is 
the Jirst value for which any regular term can be calculated. This does not 
contradict the results of the large-N analysis of course. It simply implies that 
the two limits N + CO, x +- xRsp do not commute. 

N > - (2i+2)A1 ( i ~ 0 , 1 , 2 ~ . . . ) ,  (17) 
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What role then does Leibovich's solution play in a description of rear-stagna- 
tion-point flow? It seems plausible that for NL > 2 it is the leading term in an 
asymptotic expansion about the rear stagnation point. The next term in such an 
expansion is f 3  i f  it can be found (i.e. NL > 4 ) )  but if not one or more non-regular 
terms must be introduced. If N' > 1 (so that there is no separation) but NL < 2,  
the leading term in the expansion is non-regular. This idea will be explored 
using some linear model equations. 

Oseen analysis 
As our first model equation we take 

au au a2u 
ax ax ay2 

U - =  U - + N ( U - u ) + N -  

Equation (10) is still true for this simplified equation. In  addition, an escalation 
similar to (17) occurs if we attempt a regular solution a t  the rear stagnation 
point. However, the failure of the first regular term coincides with the vanishing 
of the skin friction. 

Let u-  U = e@P, 

so that 

F is equal to 

so that for the special case U = 2 sin x we have 

P = &V In tan &x = NL In tan ax. 

The boundary conditions for P are 

(19) 

and the formulation is complete if the initial conditions are given. It is incon- 
venient to take the initial station a's x = 0; instead we take it as x = Jn, F = 0 and 

P(0,y) = 0. (20b) 

The solution for P given by Laplace transforms is 

where the logarithmic derivative of the gamma function, or psi function, is 

m 1 

~ ( z )  = -y+(z - l )  2 I 

(n + 1) ( z  + n) ' 

$ is mermorphic with simple poles a t  the non-positive integers. 
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The velocity is 

where 

At the rear stagnation point P -+ OC) so that it is only necessary to discuss the 
rightmost singularities in the transform plane. If NL < 1 all the poles lie to the 
left of the imaginary axis so that the major contribution to u comes from the 
branch cut terminating at the origin. If 1 < NL < 3 just a single pole appears in 
the right half-plane at  1 - l /NL.  If 3 < NL < 5 two poles appear to the right at 
1 - l/NL and 1 - 3/NL. Each time NL is increased by a factor of 2 another pole 
shifts to the right of the origin and every pole in that half of the plane contributes 
a regular term to the asymptotic expansion. Once all these poles have been used 
up the branch point contributes an infinite number of terms to the expansion 
and the first pole in the left half-plane is never reached. 

Deforming the contour around the cut leads to the following expressions for I :  

" e l F  sin , /(r) y 
.- (a  > O ) ,  

1 

n o  a - r  
I = e-aF cos ,/(a) y + - (P)! dr 

and the integral, the contribution from the cut, is written as 

Thus the asymptotic expansion for u when 1 < NL < 3 is 

It is consistent with the order of the expansion to replace gU by s( 3 7~ - x) and 
F by ( - NLlns) in (22). Should the inequality 3 < NL < 5 hold, the two leading 
terms would be O(s)  and O(s3) respectively, followed by the logarithmic terms. 

Suppose now we seek the asymptotic expansion directly from (18) by writing 

where t = y/,/( -Ins). 

For NL < 3 we are forced to end the regular terms at s since higher-order terms 
diverge algebraically as y -+ CO. We find 

f = 1-exP[-,/(1-1/NL)YI 
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in agreement with the first term of ( 2 2 ) ,  and the functions g, satisfy 

NLgi + +tgL + ng, = 0, 

gn(0) = 0, gl(0O) = 0, 

dp e--p sin ( J p  t/,/NL) pn-l ,  whence 
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in agreement with the remaining terms of ( 2 2 ) .  However the C, are unknown 
constants that cannot be determined from an examination of the rear stagnation 
point alone. The solution of a parabolic equation a t  a point depends on the entire 
history of the solution up to that point. If this history is not known, it will be 
reflected in the present kind of indeterminacy. Note however that the regular 
terms can be found by a purely local study. 

A second model equation 
A more realistic model equation accounts also for the second inertia term. 

N T ,  - s -+y-  z2- 
as ay ay 

T (s ,  00) = 0, 

aT aT a2T Consider then 

(25 )  

and T supposed given on the wall. This model can be derived from (1) by writing 
T = u- U ,  v = - y and U = -8. At the wall we should then have 

T(s,O) = 8, (26) 

but we shall feel free to generalize (26) to an arbitrary power series ins. Then with 

T ( s ,  0) = 1, t = -Ins (initial station a t  t= O ) ,  

The solution given by the calculus of residues is 

( 2 8 b )  

where the H, are Hermite polynomials and z = $e-zt. The expansion (28 )  is 
appropriate for small s but is not uniform in y .  Fortunately the series can be 
summed. 

Denoting the sum in (28 b )  by L, 
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where the .LE are Laguerre polynomials and the last result is the well-known 
generating function for these polynomials. In  this way 

If N > 0 we have the representation 

so that after a simple change in variable the final solution is 

which is actually the solution when the wall condition is 

TM(s, 0) = SM. 
(The substitution T = sT' reduces this problem to the one treated above with 
N + N - M . )  Thus the expansion for small s, (28a) ,  is 

The general solution is a linear combination of such T,. 

When y is large D,(y)  N e-$Yayn, 

so that aregular term O(s'), decaying for large y ,  can only be obtained if N > M .  
If N < M the O(sM) term diverges algebraically as y -+ 00 and a t  the same time 
fractional powers of s are reached in the expansion. This is somewhat different 
from the Oseen model. There, breakdown coincided with the appearance of an 
infinite number of logarithmic terms and the next regular term was never reached. 
Here the regular terms become interspersed with fractional powers as soon as 
they are no longer uniformly valid. Note that the leading term in T is either 
O(sM) or Q(sl+N) so that if N = 1 the leading term is O(s) for all non-negative N .  
In  addition, as in the Oseen model, the uniformly valid regular terms can be 
found from a purely local analysis. 

A plausible conclusion to be drawn from the results for these linear equations 
is that, if terms in a regular expansion for the exact boundary-layer equations 
can be found, then they are the leading terms in an asymptotic expansion about 
the rear stagnation point. Any information that they give about quantities like 
skin friction is correct, for example. 

Numerical integration 
The present view of rear-stagnation-point flow seems more realistic than that 

of Leibovich. A crucial test, however, is whether the boundary-layer equations (1)  
have a proper solution when 1 < NL < 2 and the most obvious way to establish 
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this is by numerical integration. This was suggested by the referee and fortunately 
the suggestion coincided with the opportunity to act. Dr P. G. Williams of 
University College London has a program for integrating the incompressible 
boundary-layer equations with an arbitrary pressure gradient; this program has 
proved of great value in studying the effects of suction on separation. He agreed, 
very kindly, to modify this program to include the Lorentz force N (  U - u) in 
the momentum equation, and we have been able to integrate the equations all 
the way to the rear stagnation point for sufficiently large N .  This tool will enable 
us to investigate a great many questions about the problem and we hope to report 
on this in a subsequent paper. For the present purposes we were content to 
demonstrate two things. In the first place the skin friction at  the rear stagnation 
point is correctly given by the similarity solution when NL > 2. Leibovich gives 
the skin friction for various values of N and we were able to duplicate these 
values for U = 1 - x by integrating from a uniform flow at x = 0. In the second 
place the flow does not separate when 1 < NL < 2, although there is then no 
similarity solution. Figure 5 is a plot of skin friction at  the rear stagnation 
point as a function of NL. The values for NL 2 2 are those given by Leibovich 
and confirmed by us; those for NL < 2 were computed using Williams’ program. 
Our preliminary conclusion is that the skin friction varies perfectly smoothly 
through the critical value NL = 2 although whether this depends on the form 
chosen for U remains to be seen. 

Reinstatement of the Laplacian 
There is no doubt that the boundary-layer equations break down at  the rear 

stagnation point. Expansions of the type (23) are only meaningful at distances 
large compared with the region of breakdown and at  the same time small compared 
to 1. What is the physical manifestation of this breakdown? In particular, 
does a thin vortical region leave the rear stagnation point (figure 3) or not? 
Leibovich, it seems, believed that this did not happen, that instead the boundary 
layer heals itself (figure 2). He points out that the fluid leaving the boundary 
layer must lose its vorticity and the Lorentz force is capable of destroying 
vorticity. This in itself is not enough however. For a flat plate, say, we should 
certainly not expect the boundary layer to be of the form figure 4 but rather 
should anticipate a wake as in OHD. The crucial additional fact is the existence 
of the stagnation point, which ensures that the Lorentz force has a very large 
time to act. If the boundary-layer thickness is O(R-*) a fluid particle takes at 
least a time of O(ln,/R) to pass through the neighbourhood of the rear stagnation 
point. The Lorentz force destroys vorticity by a factor e-Ntso that the net decay 
is O(R-iN) and if N > 0 there is no viscous tail. 

This elementary argument can be reinforced by studying the model equation 

aT aT 1 
-s-+Y- = - A T - N T ,  

as ay R (33) 

which has an obvious relation to (25 ) .  The flow situation to be studied is shown 
in figure 6. T is even in y so that it is only necessary to prescribe the jump in Ty 
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FIGURE 3 

FIGURE 4 

N L  
FIGURE 5. a, similarity solution (Leibovich) ; 0, numerical computation; 

8, separation at  rear stagnation point when N L  = 1. 
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across the plate. Boundary layers grow from the edges at  & 1 eventually meeting 
on the y axis at  the rear stagnation point. It is convenient to recast ( 3 3 )  in the 
form 

because this equation has been investigated by Pillow (1964) in the special case 
M = 0. In  the present problem there is a line of sources distributed down the 
7 axis with strength proportional to T ,  on the plate. Pillow's derivation of a 
source solution can be followed for M + 0 with only minor changes. The substi- 
tution T = e-TaS is made and the double Fourier transform of the equation for 
S is taken. This yields a first-order ordinary differential equation for the trans- 
form x". Solving for x" and then inverting yields 

T&+T,,+2vT,-2@-MT = - 8 ( < - ~ ~ ) 8 ( ~ - / 3 ) ~  (34) 

w [!? 4- (? - p)']Is7 4 It2 -t (7 + p)']*, (351 

where we have put a! = 0. The solution (35) makes sense if M > - 2. 

by G(s), it  follows that 
Denoting the solution to (33) by H ,  and the jump in Tv across the plate 

(36a) 
+ 1  

-1 
H = -1 dZ G(Z) T(s, y ;  Z), 

A fair amount of information can be deduced from the source solution ( 3 6 b )  
when the Reynolds number is very large. wq is O(R) so that the major contribu- 
tion to the integral in ( 3 6 b )  comes from the neighbourhood of t  = 1 or t = w/q. 

Suppose w/q  < 1 so that 
IS-Zl < Is+Zl. 

This is true for points on the same side of the y axis as the source. Using Laplace's 
method 

(37) 
This is an O(1) quantity, the source strength necessary for this being O(JR). 
If y = 0, (37) simplifies to 

If s > 1 this is exponentially small since the source has very little upstream in- 
fluence. Downstream of the source (s < 1) the exponential factor vanishes and 
the behaviour is algebraic. 
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Laplace’s method can also be used when s = 0 so that wIq = 1. The important 
contribution then comes from the neighbourhood of the lower integration limit. 
Then 

If  N = 0 this is an O( 1) quantity and there is a viscous tail as sketched in figure 3. 
In  general however, this is O(R-iN) in precise agreement with the argument given 
at  the beginning of the section. 

This magnetically produced decay also appears in the vorticity that leaks 
across the y axis. If Is+ZI > Is-,?] then w/q > 1 so that the major contribution 
to the integral comes from the neighbourhood of w/q, Then 

In addition to the exponential decay of (38) this also has the R-BN factor of (39). 
Before leaving this section we may point out that a viscous tail can only be 

generated if T, on the plate is considerably larger than O ( J R ) .  Certainly this is 
the appropriate scale when s = O(1) and it is difficult to imagine that in the 
Navier-Stokes region close to the rear stagnation point the y derivative can be 
substantially larger than this. 

Navier-Stokes equations 
In early discussions of this work a point often raised was that, since Leibovich’s 

solution is an exact solution of the Navier-Stokes equations, which presumably 
have an analytic solution in the neighbourhood of the rear stagnation point, 
what is the basis then of rejecting it when NL < 2? The answer is presumably that 
it is not the general solution. 

The momentum equation is 

au au au 1 a Z u  azU 
u-+v- = U-+N(U-u)+-  -+- 

ax ay ax R (aty ax2) 2 

and we scale the variables thus: 

v = V/JR, y = Y/JR ,  x = X / J R ,  u = u’IJR, U = U’/JR.  

Since U = - x + a3x3 + . . . we have 

U‘ = -x+O(l/R),  

and seek a solution in the form 

u = -xf’(y)+xSg(y)+..., 

whence f” -ff” +f’2 - 1 + N (  1 -f’) = 6g. 

The boundary conditions 

g(a3) = 0) f’(a3) = 0, f ( 0 )  =f’ (O)  = 0) 

recognize the absence of a viscous tail. 



Separation and magnetohydrodynamics 497 

If g = 0, (42) is essentially the same as (15) and there are no acceptable solu- 
tions if N < 2. In  general, however, g does not have to vanish identically and 
there is no reason why difficulties should arise. 

The exterior inviscid flow 
In  the expansion preceding (15) it was assumed that the exterior velocity can 

be described by a Taylor series about the stagnation point. There is no reason to 
expect this and it is not an important restriction provided the leading term is 

FIGURE 6 

O(x) .  This is important. Presumably &(O, y)/ay is neither equal to infinity nor 
zero so that the continuity equation implies (figure 7)  

Even though the higher-order terms may not be integral powers of x the crucial 
leading term is O(x),  at least when the wall is smooth and the applied field is 
perpendicular to the wall. 

Summary and concluding remarks 
In  this paper we first showed that suppression of separation can be expected 

if the magnetic field is strong enough. Crude estimates based on highly restricted 
analyses indicate that interaction parameters of order 1 are all that are needed 
for complete suppression. The skin friction was shown to be always positive 
if N > max ( -dU/dx ) .  
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At the rear stagnation point (unlike the front) the two limits x -+ xmP, 
y + co do not commute. It is for this reason that Leibovich’s rear-stagnation- 
point solution has algebraic decay and it implies that a uniform regular ex- 
pansion about the stagnation point cannot be obtained. The failure reveals 
itself in practice as a continuously increasing lower limit on N required to com- 

FIGURE 7 

pute higher terms. However, we do not reject Leibovich’s solution. Linear 
model equations suggest that if regular terms can be calculated they are correct. 
Numerical integration of the full boundary-layer equations confirms this. 

In the final sections we examined the nature of the boundary-layer breakdown 
implied by the non-regularity. Apparently the boundary layer does not leave the 
body at  the rear stagnation point-it heals itself. But, in so doing, derivatives 
parallel to the wall become as large as those in the normal direction. Any viscous 
tail can only be associated with non-analyticity in the exterior inviscid flow. 

This work was done at  Cornell University and forms part of the author’s 
Ph.D. thesis. It was supported there by the U.S. Army Research Office, Durham. 
Final preparation of the manuscript and the numerical work were done at  
University College London. 
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